6-2

6-2 GEOMETRIC MEAN

SIMILARITY IN RIGHT TRIANGLES

Altitude: The perpendicular height of a geometric figure.

Theorem: The altitude to the hypotenuse of a right triangle forms two triangles that are similar to each other and to the original triangle.

GEOMETRIC MEAN

The geometric mean between two numbers \hat{a} and \hat{b} is the positive number \hat{x} where:

Solve for X:

Examples:

Solve for X:
$$X \cdot X = a \cdot b$$
 "Mean Proportion
$$X^2 = ab$$
X is considered to be the geometric mean. $\sqrt{X^2} = \sqrt{ab}$

Find the geometric mean of 10 and 40.
$$\frac{x}{X} = \frac{x}{X} = \frac{x}{40} \rightarrow x^2 = 400$$

Find the geometric mean of 1 and 36.

$$\frac{1}{X} = \frac{X}{36}$$

$$X^{2} = 36 \rightarrow X = \sqrt{36}$$

$$X = \frac{1}{36}$$

	# (#	[‡] 2
	Altitude and Hypotenuse	Leg and Hypotenuse	
Diagrams	x h	B C A (a or b)	B c b A
Corollaries (The length of the altitude is the geometric mean of the lengths of the two segments of the hypotenuse.	The length of a leg is the geometric mean of the length of the segment of the hypotenuse that is closest to that leg and the length of the entire hypotenuse.	
Proportions	$\frac{P}{X} = \frac{A}{P}$	$\frac{a}{x} = \frac{c}{a}$	$\frac{b}{x} = \frac{c}{b}$
Equations	H=1XY	$a^2 = CX$ $a = VCX$	62 = 40 6 = 440

6-2

EXAMPLES FOR ALTITUDE AND HYPOTENUSE:

1. In right triangle ABC, altitude CD is drawn to hypotenuse AB. If CD = 6 and AD = 4, find the length of DB. **DB =** *

2. In right triangle ABC, altitude CD is drawn to hypotenuse AB. If AD = 2 and DB = 32, find CD.

6-2

EXAMPLES OF LEG AND HYPOTENUSE: $BIG\Delta HYP = SMALL\Delta HYP$

BIG∆LEG

EG SMALLΔLEG

hypotenuse/lag

3. In right triangle ABC, altitude CD is drawn to hypotenuse AB. If AD = 4 and DB = 21, find AC.

4. In the accompanying diagram of right triangle ABC, CD is drawn perpendicular to hypotenuse AB.

If AB = 16 and DB = 4, find BC.

